PROTOCOLE D'ETUDE EPIDEMIOLOGIQUE

SéroMed : Degré d’exposition au virus de l’hépatite E et à d’autres agents infectieux de la population vue en consultation de médecine générale dans le sud de la France

Étude de séroprévalence menée en Corse, PACA et Occitanie

| Responsables | Alessandra Falchi, réseau Sentinelles, EA7310 Université de Corse
| | Rémi Charrel, Aix-Marseille Univ - IRD_190 - Inserm_1207 - EHESP |
| Chargé de l’étude | Lisandru Capai, réseau Sentinelles, EA7310 Université de Corse |
| Comité scientifique | Thierry Blanchon, réseau Sentinelles, UMR S 1136 (INSERM - UPMC)
| | Pierre Gallian, EFS, Aix-Marseille Univ - IRD_190 - Inserm_1207 - EHESP
| | Guillaume Heuzé, Cire Paca-Corse
| | Xavier N. de Lamballerie, Aix-Marseille Univ - IRD_190 - Inserm_1207 - EHESP
| | Dominique Leparc, médecin généraliste Sentinelles, Antenne Méditerranée
| | Isabelle Leparc, CNR Arboviroses, Aix-Marseille Univ - IRD_190 - Inserm_1207 - EHESP
| | Philippe Malfait, Cire Paca-Corse
| | Louise Rossignol, Médecin généraliste et responsable du pôle surveillance du réseau Sentinelles, UMR S 1136 (INSERM - UPMC)
| | Cécile Souty, Biostatisticienne du réseau Sentinelles, UMR S 1136 (INSERM - UPMC) |
SOMMAIRE

RESUME... 4

1 INTRODUCTION ... 5

1.1 L’HEPATITE E ... 5

1.1.1 Le virus ... 5

1.1.2 Clinique ... 5

1.1.3 Marqueurs de détection .. 6

1.1.4 Une situation mondiale à deux facettes ... 7

1.1.5 Séroprévalences et nombre de cas humains en France .. 8

1.1.6 Taux de virémie chez les donneurs de sang en France ... 10

1.2 MALADIES A PREVENTION VACCINALE .. 10

1.3 ARBOVIROSES ET MALADIES PARASITAIRES .. 11

2 OBJECTIFS .. 13

2.1 OBJECTIF PRINCIPAL .. 13

2.2 OBJECTIFS SECONDAIRES .. 13

3 PLAN EXPERIMENTAL ET METHODOLOGIE .. 14

3.1 TYPE D’ETUDE ... 14

3.2 NOMBRE DE SUJETS NECESSAIRES .. 14

3.2.1 Nombre de sujets nécessaires pour répondre à l’objectif principal .. 14

3.2.2 Nombre de sujets nécessaires pour répondre aux objectifs secondaires .. 15

3.2.3 Période d’étude ... 15

3.3 MODALITES PRATIQUES D’ECHANTILLONNAGE .. 17

3.3.1 Sélection des médecins généralistes .. 17

3.3.2 Sélection des sujets ... 19

3.3.3 Procédure d’inclusion dans l’étude .. 20

3.3.4 Formation des médecins participants .. 20

3.3.5 Mise en place du matériel chez les médecins du réseau .. 21

3.3.6 Réalisation et envoi du prélèvement .. 21

3.3.7 Traitement échantillons au laboratoire ... 21

3.3.8 Circuit de traitement de l’information ... 22

3.3.9 Données issues du questionnaire d’inclusion .. 23

3.3.10 Mode de circulation des données .. 23

3.4 PHASE PILOTE ... 24

4 ANALYSE DES DONNEES .. 24

4.1 DESCRIPTION ET REPRESENTATIVITE DES POPULATIONS DE L’ETUDE .. 24

4.2 VOLET « SEROPREVALENCE » .. 25

4.3 VOLET « FACTEURS DE RISQUE » .. 26

5 BENEFICIES ET RISQUES DE CETTE ETUDE ... 27

6 CREATION D’UNE COLLECTION BIOLOGIQUE .. 28

7 CONSIDERATION ETIQUES ET LEGALES .. 28

A) CADRE REGLEMENTAIRE DE L’ETUDE .. 28

B) INFORMATION DES SUJETS ET CONSENTEMENT ECLAIRE .. 28

C) COMMISSION NATIONALE DE L’INFORMATION ET DES LIBERTES .. 29

D) COMITE D’ETHIQUE DE RECHERCHE ... 29

E) UTILISATION DES RESULTATS DE L’ETUDE ... 29

8 CALENDRIER .. 29
REFERENCES .. 30

ANNEXES ... 33

10.1 ANNEXE 1 : EXEMPLE GRILLE VIERGE POUR D’INCLUSION DES SUJETS ... 33
10.2 ANNEXE 2 : AFFICHE APPEL A PARTICIPATION POUR LES PRELEVEMENTS EN MEDECINE GENERALE .. 34
10.3 ANNEXE 3 FICHE INFORMATION PATIENT ET FORMULAIRE CONSENTEMENT EN MEDECINE GENERALE .. 34
10.4 ANNEXE 5 PLAQUETTES INFORMATION MINEURS (MOINS DE 7ANS ; 7‐12ANS ET ADOLESCENTS) MEDECINE GENERALE 37
10.5 ANNEXE 6 : MODE OPERATOIRE DE LA PONCTION CAPILLAIRE .. 38
10.6 ANNEXE 7 CAHIER DE LIAISON POUR LE MEDECIN ... 39
10.7 ANNEXE 8 CONSIGNES TRIPLE EMBALLAGE ... 40
RESUME

<table>
<thead>
<tr>
<th>Titre</th>
<th>SéroMed : Degré d’exposition au virus de l’hépatite E et à d’autres agents infectieux de la population vue en consultation de médecine générale dans le sud de la France</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexte :</td>
<td>Les études de séroprévalence permettent d’estimer le degré d’exposition d’une population à un agent infectieux. Les estimations issues de ces études apportent des données supplémentaires aux études de prévalence déclaratives. Elles contribuent, dans le cas de maladies à prévention vaccinale, à mesurer l’impact de la vaccination et, dans le cas d’autres maladies infectieuses, à estimer leur fréquence et les populations à risque, permettant d’orienter la mise en place des éventuelles mesures de prévention. L’évolution de la diffusion du virus de l’hépatite E dans le monde aujourd’hui, fait que celui-ci peut être défini comme un virus émergent. Selon les régions du globe, il peut être responsable d’épidémies d’hépatite aiguë de grande importance (pays à faible niveau d’hygiène), mais cause aussi un nombre de cas autochtones grandissant dans les pays industrialisés comme la France. L’émergence de l’hépatite E concerne tout particulièrement la Corse. D’autres pathogènes présentent également un intérêt de santé publique dans les régions du sud de la France (PACA, Corse, Occitanie). Parmi eux, seize pathogènes ont été ciblés dans cette étude.</td>
</tr>
<tr>
<td>Objectif principal</td>
<td>Estimer la séroprévalence régionale de l’hépatite E chez la population adulte (>18 ans) dans les trois régions de l’étude (Corse, PACA et Occitanie) en médecine générale.</td>
</tr>
</tbody>
</table>
| Objectifs secondaires | - Estimer la séroprévalence régionale, en Corse, Occitanie et PACA, dans la population adulte (>18 ans) de médecine générale vis-à-vis de maladies à prévention vaccinale suivantes, l’hépatite C et la maladie de Lyme
- Estimer la séroprévalence inter-régionale méditerranéenne (Corse, PACA et Occitanie) dans la population adulte (>18 ans) en médecine générale vis-à-vis des arbovirus, tétanos et bilharziose
- Étudier les facteurs de risque susceptibles d’être associés à une sérologie positive pour l’hépatite A et l’hépatite E
- Obtenir des séroprévalences inter-régionales pour la classe d’âge 5-18 ans concernant les 16 pathologies de l’étude |
| Type d’étude | Il s’agit d’une étude transversale multicentrique de séroprévalence. |
| Population concernée | Patients vus en consultation de médecine générale âgés de plus de 5 ans dans les trois régions du sud de la France (Corse, PACA et Occitanie). |
| Participants | L’étude sera proposée à l’ensemble des médecins généralistes de l’antenne Méditerranée du réseau Sentinelles. Des médecins non Sentinelles pourront être recrutés si l’objectif du nombre de médecin n’est pas atteint. |
| Déroulement de l’étude | Pour chaque patient éligible, le médecin devra après consentement :
✓ Informer le patient
✓ Réaliser au cabinet un prélèvement de sang capillaire ;
✓ Remplir la première partie du questionnaire
✓ Donner le questionnaire au patient
✓ Envoyer le tout par voie postale à l’Université de Corse |
| Calendrier | Avril/Mai 2017 ➔ Recrutement, Formation et Equipement des médecins pour la phase pilote
Juin à Aout 2017 ➔ Phase Pilote + Recrutement/Equipement des médecins pour l’étude
Septembre 2017 à Décembre 2019 ➔ Etude, période de prélèvement
Début 2020 ➔ rédaction du bilan de l’étude |
1 INTRODUCTION

Les études de séroprévalence permettent d’estimer le degré d’exposition d’une population à un agent infectieux. Les estimations issues de ces études apportent des données supplémentaires aux études de prévalence déclaratives. Elles contribuent, dans le cas de maladies à prévention vaccinale, à mesurer l’impact de la vaccination et, dans le cas d’autres maladies infectieuses, d’estimer leur fréquence et d’identifier les populations à risque, permettant d’orienter la mise en place de mesures de prévention.

1.1 L’hépatite E

1.1.1 Le virus

L’hépatite E est une maladie infectieuse causée par le virus de l’hépatite E (VHE), qui est un petit virus à ARN, simple brin à polarité positive, avec une taille variant entre 7,2 et 7,5 kb (Tam et al., 1991). Il est classé dans la famille des Hepeviridae, genre hepevirus, dont il est le seul représentant (Kamar et al., 2012). Il est composé actuellement de quatre génotypes majeurs appartenant à un seul sérotype (VHE-1, VHE-2, VHE-3 et VHE-4).

1.1.2 Clinique

La contamination par le virus de l’hépatite E est quasi exclusivement d’origine « orale » (de très rares cas sont parentéraux). Le virus est absorbé au niveau de l’intestin où il se réplique. L’intestin devient ainsi le site de la réplication primaire. Les particules virales néo-synthétisées se retrouvent dans le sang et vont continuer de se répliquer au niveau des hépatocytes (Péron et Mansuy, 2009). Les autres particules virales sont rejetées au niveau des selles. Il existe différentes formes de manifestations cliniques pour l’hépatite E. Premièrement, la forme asymptomatique qui représenterait plus de 50 % des cas (Péron et Mansuy, 2009). L’infection par le VHE peut également se manifester par une hépatite aiguë dont le tableau clinique ressemble fortement celui de l’hépatite A. L’hépatite aiguë cytolytique est la symptomatologie la plus souvent retrouvée, avec une évolution favorable et un retour des constantes biologiques à la normale dans les trois mois suivant l’infection (Nicand et al., 2009). Il semble que la sévérité de l’infection soit indépendante de l’âge des patients, avec un taux de mortalité de 1 à 4 %, c’est-à-dire une valeur supérieure à celle observée pour l’hépatite A. La durée d’incubation va de 15 jours à 9 semaines (moyenne 40 jours). La phase prodromique est assez variable : asthénie, fièvre, troubles digestifs pendant quelques jours, puis s’en suit une phase icérique de 2 semaines. Les nécroses des cellules hépatocytaires ne sont pas dues à une cytotoxicité du virus mais à une réaction immunitaire attaquant les cellules infectées. Des formes cholestatiques peuvent apparaître dans 20 % des cas (Irshad, 1999). Des formes sévères d’hépatites fulminantes sont observées (1-2 % des cas).
Elles se traduisent par un départ très sévère entrainant une forte destruction du parenchyme hépatique et une atrophie du foie pouvant mener au décès de la personne infectée. Cette forme touche surtout les femmes enceintes. Dans une étude basée sur 132 femmes enceintes, 55 % des cas ont été rapportés au cours du troisième trimestre (Patra et al., 2007). Le taux de mortalité maternelle global était de 40 % mais pouvait grimper à 74 % lorsqu'une hépatite fulminante était présente (Patra et al., 2007). Des morts fœtales, et des prématurés, un poids plus faible à la naissance et une plus grande mortalité périnatale ont également été décrits (Patra et al., 2007 ; Khuroo et al., 2009). Le passage à la chronicité est généralement exclu pour l’hépatite E. Cependant, il existe un risque de passage en particulier chez les sujets immunodéprimés (Kamar et al., 2008 ; Gerolami et al., 2009). Des cas d’hépatite E chroniques, définis par une virémie persistante durant plus de 6 mois ont été rapportés chez des patients immunodéprimés, du fait de transplantation rénale ou hépatique de maladies hématologiques ou encore de co-infection par le VIH (Péron et al., 2006 ; Kamar et al., 2008 ; Dalton et al., 2009). Enfin, le VHE peut également causer des troubles neurologiques (Kamar et al., 2011).

1.1.3 Marqueurs de détection

Le diagnostic clinique de l’hépatite E est impossible car les symptômes ne sont pas assez spécifiques, notamment pour le distinguer des autres hépatites aiguës. Il faut donc effectuer la détection sur la recherche d’anticorps ou du génome viral du VHE.

![Cinétique d'apparition des anticorps et d'enzymes ALAT suite à une infection par le VHE](Aggarwal, 2011 ; Lhomme, 2013)

Les immunoglobulines M anti-VHE apparaissent en premières au niveau de la cinétique des marqueurs post-infection. Le pic de détection arrive en moyenne à la 6ème semaine et sont détectables jusqu’à 10
semaines après l'infection. La détection de ces IgM est un marqueur d'une infection récente, tout comme la présence du génome viral dans le sang et les selles. Les immuoglobulines G anti VHE apparaissent juste après les IgM et peuvent être détectées durant des années après l'infection (mémoire immunitaire) (Khuroo et al., 1993). Elles sont un marqueur d'une infection plus « ancienne ». Ainsi le diagnostic est effectué à partir de la recherche IgM, de l’antigène VHE et de la recherche d’ARN viral.

Une virémie est observée quelques jours avant le début des manifestations cliniques et disparaît 1 à 2 semaines après celle-ci. La quantité de virus trouvé varie selon les personnes, mais selon une étude portant sur 11 personnes en 2007, la charge virale allait de 2×10^3 à $1,7 \times 10^7$ copies de génomes par millilitre (Takahashi et al., 2007).

La présence du VHE dans les selles est plus longue. En effet, l’excrétion commence une semaine avant l’apparition des symptômes et peut durer jusqu’à 6 semaines après. Cependant chez les personnes immunodéprimées cette sécrétion peut être considérablement allongée (Péron et al., 2006). La charge virale dans les selles est de l’ordre de $5,7 \times 10^4$ copies de génomes par millilitre (Takahashi et al., 2007). La recherche virale par RT-PCR se fait donc à partir de prélèvements sanguins ou de selles et les séquences ciblées pour la détection du virus HVE sont ORF2 et ORF3.

Un autre marqueur d’une hépatite, les Alanines-Aminotransférase (ALAT), apparaît 2 à 3 semaines après la contamination avec un pic à la sixième semaine. Cette enzyme n’est pas spécifique de l’hépatite E mais démontre des symptômes au niveau du foie.

L’évolution actuelle de la diffusion du virus de l’hépatite E dans le monde, fait de celui-ci un virus émergent. Selon les régions du globe, il peut être responsable d’épidémies d’hépatite aigüe de grande ampleur (pays à faible niveau d’hygiène), mais cause aussi un nombre de cas autochtones grandissant dans les pays industrialisés comme la France.

1.1.4 Une situation mondiale à deux facettes

Dans les pays industrialisés comme la France, le virus de l’hépatite E (VHE) est un agent à transmission zoonotique. Le génotype VHE-3 est ubiquiste et le génotype 4 est majoritairement présent en Asie (Kamar et al., 2012). Ces deux génotypes sont présents chez l’Homme et l’animal. Le VHE se transmet de l’animal (porcs, sangliers, cervidés) à l’homme principalement par ingestion de viande insuffisamment cuite (principalement de foie) ou par contact direct avec le réservoir animal (Colson et al., 2010 ; Kaba et al., 2010a ; Kaba et al., 2010b ; Pavio et al., 2014). Dans les pays industrialisés, les cas d’hépatite E d’origine alimentaire sont en augmentation et probablement sous-estimés (Yugo et
Meng, 2013). Une recrudescence de cas d’hépatite fulminante et d’hépatite chronique, suite à l’ingestion de saucisses (porc, sanglier et de cerf) à bases de foie dégustées crues ou insuffisamment cuites, a été décrite dans la littérature (Dalton et al., 2010 ; Legrand-Abravanel et al., 2010 ; Miyashita et al., 2012).

Dans les pays en développement où la qualité de l’eau est mauvaise, des épidémies sont causées par les génotypes VHE-1 et VHE-2. La transmission y est majoritairement de type féco-orale. Les séroprévalences sont en général élevées et varient entre 23.3 % en Thaïlande (Pourpongporn et al., 2009) et 80 % en Egypte (Abe et al., 2006). La grande majorité du globe est touchée par l’hépatite E si on tient compte des cas sporadiques et épidémiques (Figure 1) (Nicand et al., 2009).

![Figure 2 Répartition des pays selon qu’ils aient des cas sporadiques ou des épidémies (Nicand et al., 2009).](image)

1.1.5 Séroprévalences et nombre de cas humains en France

Le tableau 1 présente les séroprévalences observées en France en fonction des populations, des régions et du test utilisé (Lapa et al., 2015). Le taux de séroprévalence en France varie de 3,2 % (Boutrouille et al., 2007) à 22,4 % (Mansuy et al., 2016) selon les études, les régions et les kits de détection. En Corse, PACA et Occitanie, les séroprévalences observées sont les plus élevées, avec 60 à 70 % de séropositivité anticorps anti-VHE (Mansuy et al., 2016). Cependant, l’utilisation de trousses de détection différentes ne permet pas de comparer ces données entre elles.
Dans l’étude de Mansuy et al. (2016) la séropositivité est plus élevée chez les donneurs de plus de 45 ans (30,7 % versus 14,7 % p<0,001) et chez l’homme (25 % versus 19,5 % chez la femme, IC95 [23,9-26,2]). Plus l’âge augmente plus la séroprévalence augmente, passant de 10,5 % pour les 18-27 ans à 34,9 % pour les 57-70 ans au niveau national. Les facteurs de risque alimentaires d’une infection par le VHE sont la consommation de viande de porc crues ou pas assez cuites à base de saucisses de foie, y compris les ficatelli (saucisse traditionnelle Corse de foie de porc). Les autres risques alimentaires concernent la consommation de viande de gibier, d’abats, et d’huîtres. À l’inverse, l’eau potable en bouteille a été associée à un taux inférieur d’IgG anti-VHE (Mansuy et al., 2016). En Corse, le ficatellu est un genre de saucisse qui contient au moins 30 % de foie de porc. Cet aliment peut être consommé cuit mais également cru après séchage. Cette pratique, ainsi que la sous cuisson, sont une pratique à risque concernant le VHE.

En France, le centre national de référence des hépatites entéro-transmissibles décrit un accroissement important du nombre de cas humains de VHE entre 2002 (9 cas) et 2014 (1847 cas) (CNR, 2014). Il s’agit de cas diagnostiqués par sérologie ou recherche virale, dans différents CHU de France. Cette
observation reflète probablement un intérêt accru pour le VHE plutôt qu’une réelle émergence. Les cas ont été diagnostiqués dans toutes les régions métropolitaines, mais majoritairement dans le Sud de la France (46 % des cas nationaux).

1.1.6 Taux de virémie chez les donneurs de sang en France
Selon une étude menée à partir de plus de 53 000 dons de sang en 2014 (Gallian et al., 2014), la France posséderait un des taux de virémie pour l’hépatite E les plus élevés d’Europe avec 1 don positif tous les 2218 (Tableau 2).

Tableau 2 : Comparatif des taux de virémies positives pour le VHE en Europe chez les donneurs de sang

<table>
<thead>
<tr>
<th>Pays</th>
<th>Proportion de donneurs avec une virémie positive</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>1/2218</td>
<td>(Gallian et al., 2014)</td>
</tr>
<tr>
<td>Ecosse</td>
<td>1/14520</td>
<td>(Cleland et al., 2013)</td>
</tr>
<tr>
<td>Pays Bas</td>
<td>1/2700</td>
<td>(Slot et al., 2013)</td>
</tr>
<tr>
<td>Allemagne</td>
<td>1/1240 et 1/4525</td>
<td>(Vollmer et al., 2012) (Baylis et al., 2012)</td>
</tr>
<tr>
<td>Angleterre</td>
<td>1/7040 et 1/2848</td>
<td>(Ijaz et al., 2012) (Hewitt et al., 2014)</td>
</tr>
<tr>
<td>Suède</td>
<td>1/7986</td>
<td>(Baylis et al., 2012)</td>
</tr>
</tbody>
</table>

Face à des séroprévalences aussi élevées dans le sud de la France, il semble important d’approfondir les résultats de Mansuy et al. (2016). La population des donneurs de sang est une population particulière. Jusqu’ici les données épidémiologiques concernant l’hépatite E provenaient soit des donneurs de sang, soit de populations à risque, soit du milieu hospitalier. Il est donc important de mener une étude en médecine pratique dans les régions françaises les plus touchées par le VHE.

1.2 Maladies à prévention vaccinale
En France, deux enquêtes de séroprévalence de plusieurs maladies à prévention vaccinale ont été réalisées respectivement en 1998 et en 2008-2010. La première montrait une immunité insuffisante vis-à-vis de la rougeole, des oreillons et de la rubéole chez les enfants et les adolescents (Levy-Bruhl et al., 1998). La deuxième, en 2008-2010, a démontré que la proportion de sujets réceptifs vis-à-vis de la rougeole, rubéole et oreillons parmi les sujets de <30 ans restait élevée en France (>7 %) permettant la survenue d’épidémie de rougeole ou d’oreillons (Levy-Bruhl, 2013). De 2008 à 2015, près de 23 500 cas de rougeole ont été déclarés en France, dont près de 15 000 cas notifiés pour la seule année 2011.
Selon le dernier rapport de l'InVS (Guthmann JP, 2012), les objectifs de couverture vaccinale fixés par la loi de santé publique (au moins 95 % pour toutes les vaccinations, exceptée la grippe : 75 %) ne sont pas atteints pour la plupart des vaccinations pour lesquelles des données de couverture vaccinale sont disponibles.

Les données de ces études permettent de classer les vaccinations recommandées dans quatre grands groupes :

- **vaccinations pour lesquelles les couvertures vaccinales sont élevées** avec des objectifs de santé publique atteints (diphtérie, tétanos, poliomyélite, coqueluche et *Haemophilus influenzae b* chez l'enfant) ;

- **celles pour lesquelles elles sont insuffisantes et stables** (HPV chez la jeune fille, rappel coqueluche de l’adolescence, RRO première dose, rappels DTP décennaux de l’adulte, BCG chez les enfants à risque) ;

- **celles pour lesquelles elles sont insuffisantes et en baisse** (grippe saisonnière) ;

- **celles pour lesquelles les couvertures sont insuffisantes, mais en progression** (RRO deuxième dose, hépatite B, méningocoque C, pneumocoque conjugué).

À noter que si les taux de couverture vaccinale en population pédiatrique sont satisfaisants, la situation est différente en population adulte avec un niveau qui est trop bas pour assurer une immunité protectrice malgré les nombreuses campagnes d’information et de vaccination mises en œuvre (principalement pour la rougeole, rubéole et les oreillons). Peu de données de séroprévalence sont disponibles pour la population adulte, ce qui ne permet pas d'obtenir une image fiable du degré de protection dans cette tranche d’âge et de prioriser les actions à mener.

1.3 Arboviroses et maladies parasitaires

À ce jour, le risque épidémique associé aux arboviroses dans le sud de la France et en particulier en Corse, est réel. Des exemples nombreux en pathologie humaine et animale démontrent que la Corse est une zone privilégiée pour l’émergence de pathologies humaines comme les arboviroses ou les maladies parasitaires (Bichaud et al., 2014 ; Pavio et al., 2014 ; Gautret et al., 2015). La situation de l’île au sud du territoire métropolitain, sa biodiversité et sa faune spécifique, la dispersion de l'habitat et la présence de nombreux vecteurs potentiels (incluant le moustique tigre *Aedes albopictus*, de nombreuses espèces de moustiques des genres *Culex* et *Anopheles*, et des phlébotomes [*Phlebotomus* et *Sergentomyia*]), la présence estivale d'une population de non-résidents très importante (270 000 résidents / 330 000 non-résidents supplémentaires en période estivale, soit un pic saisonnier de 600 000 personnes) font de la Corse un site à fort risque d’émergence infectieuse. L'ensemble des vecteurs d’arboviroses sont également présents dans le sud de la France (PACA et Occitanie). Le virus
West Nile a d’ailleurs été détecté la première fois en Camargue en 1963 (Hoffmann et al., 1968), suite à une épidémie touchant les animaux. La réapparition du virus West Nile (VWN) a d’abord été constatée chez des chevaux en 2000 (78 cas équins, aucun humain) (Murgue et al., 2001). Sept cas d’infection au VWN ont été confirmés en 2003 dans le département du Var (bilan INVS et Cire 2005). Dernièrement, un cas humain a été détecté dans le Gard, dans la région Languedoc Roussillon (ECDC, 2016). Concernant le virus Toscana, qui est un phlébovirus (transmis par des phlébotomes) De Lamballerie et al. (2007) et Brisbarre et al. (2011) ont rapporté une séroprévalence d’anticorps spécifiques de 12 % chez les donneurs de sang de la région marseillaise, ce qui confirme une circulation importante de ce virus dans la région.

En avril 2014, un foyer de transmission autochtone de bilharziose a été mis en évidence en Corse du Sud. Il s’agissait de bilharziose urinaire à Schistosoma haematobium. Le cas a été diagnostiqué chez une personne n’ayant pas voyagé en zone d’endémie. L’exposition retrouvée chez ce patient a été une baignade dans une rivière près de Porto Vecchio en 2013. Entre avril 2014 et juillet 2015, l’investigation de cet épisode a permis de retrouver 106 personnes répondant à la définition de cas et s’étant baignées en 2013. Suite à ce foyer, la mise en place d’une surveillance a été demandé par le Haut Conseil de Santé Publique et l’ANSES (Hcsp, 2015).

L’ensemble des agents infectieux décrits dans cette introduction et leurs intérêts en santé publique sont présents dans le tableau récapitulatif 1 ci-dessous.

Tableau 3 Récapitulatif des agents infectieux et leur intérêt en santé publique

<table>
<thead>
<tr>
<th>Agent infectieux</th>
<th>Intérêt en santé publique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepadnaviridae</td>
<td>• Hépatite B</td>
</tr>
<tr>
<td>• Hépatite B</td>
<td>• Maladie à prévention vaccinale, risque de mortalité accru</td>
</tr>
<tr>
<td>• Peu de données au niveau régional</td>
<td></td>
</tr>
<tr>
<td>Hepeviridae</td>
<td>• Hépatite E</td>
</tr>
<tr>
<td>• Hépatite E</td>
<td>• Maladie zoonotique</td>
</tr>
<tr>
<td>• Transmission entérique, risque transfusionnel modéré, principalement par ingestion de viande insuffisamment cuite (principalement de foie) ou par contact direct avec le réservoir animal</td>
<td></td>
</tr>
<tr>
<td>Picornaviridae</td>
<td>• Hépatite A</td>
</tr>
<tr>
<td>• Hépatite A</td>
<td>• Maladie à prévention vaccinale, vaccination non généralisée, transmission féco-orale, pas de chronicité, mais la sévérité de la maladie s’accentue avec l’âge</td>
</tr>
<tr>
<td>Paramyxoviridae</td>
<td>• Morbillivirus (rougeole)</td>
</tr>
<tr>
<td>• Morbillivirus (rougeole)</td>
<td>• Maladies à prévention vaccinale généralisée depuis 1980, immunité population insuffisante, risque d’épidémies</td>
</tr>
<tr>
<td>• Rubulavirus (oreillons)</td>
<td></td>
</tr>
<tr>
<td>Flaviviridae</td>
<td>• Virus West Nile</td>
</tr>
<tr>
<td>• Virus West Nile</td>
<td>• Transmission par arthropodes hématophages</td>
</tr>
<tr>
<td>• Virus de la dengue</td>
<td>• Virus WN : Aedes, Culex, pourtour méditerranéen, à l’origine d’encéphalites mortelles chez les animaux, fièvres avec rougeurs, arthralgie et encéphalités</td>
</tr>
<tr>
<td>• Virus Usutu</td>
<td>• Dengue : transmission Aedes, fièvres avec rougeurs, arthralgie et encéphalités</td>
</tr>
<tr>
<td>• Virus Zika</td>
<td>• Zika : syndrome de Guillain-Barré et microcéphalies</td>
</tr>
<tr>
<td>Hepacivirus</td>
<td>• Hépatite C</td>
</tr>
<tr>
<td>• Hépatite C</td>
<td></td>
</tr>
</tbody>
</table>
Tableau des maladies associées à des risques d'infection chronique

<table>
<thead>
<tr>
<th>Famille</th>
<th>Maladies associées</th>
<th>Risques et informations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Togaviridae</td>
<td>- Virus chikungunya (alphavirus)</td>
<td>- Risque d'infection chronique chez 70 % des patients, évolution vers une cirrhose dans 10-20 % des cas des patients chroniques</td>
</tr>
<tr>
<td></td>
<td>- Rubella virus (rubéole)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transmission par arthropodes hématophages, Aedes présent en Corse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maladie à prévention vaccinale, généralisée depuis 1980, immunité population insuffisante, risque épidémique</td>
<td></td>
</tr>
<tr>
<td>Bunyaviridae</td>
<td>- Virus Toscana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transmission par arthropodes hématophages (phlébotomes, tiques, moustiques), fièvres hémorragiques</td>
<td></td>
</tr>
<tr>
<td>Clostridiaceae</td>
<td>- Clostridium tetani</td>
<td>- Maladie à prévention vaccinale peu de cas en France. La maladie ne conférant aucune immunité, le seul moyen de prévention est la vaccination avec une politique de rappel bien conduite. La politique des rappels reste encore mal appliquée en France.</td>
</tr>
<tr>
<td>Trématodes</td>
<td>- Schistosome hematobium</td>
<td>- Maladie parasitaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cas de bilharziose en Corse</td>
</tr>
<tr>
<td>Spirochaetaceae</td>
<td>- Borrelia burgdorferi</td>
<td>- Maladie de Lyme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Ixodes ricinus, tique dure hématophage, est le vecteur le plus largement répandu en France et en Europe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Peu de données sur la Corse</td>
</tr>
</tbody>
</table>

2 OBJECTIFS

2.1 Objectif principal
- Estimer la séroprévalence régionale de l'hépatite E dans la population adulte (>18 ans) en médecine générale en Corse, Occitanie et PACA.

2.2 Objectifs secondaires
- Estimer la séroprévalence régionale, en Corse, Occitanie et PACA, dans la population adulte (>18 ans) de médecine générale vis-à-vis d'autres maladies :
 - à prévention vaccinale suivantes : rougeole, rubéole, oreillons, hépatites A et B
 - hépatite C
 - maladie de Lyme
- Estimer la séroprévalence inter-régionale méditerranéenne (Corse, PACA et Occitanie) dans la population adulte (>18 ans) en médecine générale vis-à-vis des maladies suivantes :
 - arboviroses : West Nile, dengue, chikungunya, Zika, Usutu, Toscana
 - maladie parasitaire : bilharziose
 - à prévention vaccinale : tétanos
- Etudier les facteurs de risque susceptibles d’être associés à une sérologie positive pour l'hépatite A et l'hépatite E
• Obtenir des séroprévalences pour la classe d’âge 5-18 ans concernant les 16 pathologies de l’étude

3 PLAN EXPERIMENTAL ET METHODOLOGIE

3.1 Type d’étude
Il s’agit d’une étude transversale, de séroprévalence, multicentrique se déroulant au sein de trois régions du sud de la France (PACA, Occitanie et Corse) en médecine générale.

3.2 Nombre de sujets nécessaires
Afin d’estimer la séroprévalence (Sx) de chaque pathologie X avec une certaine précision, le nombre de sujets nécessaire à inclure dans l’étude (nx) a été calculé grâce à la formule suivante (Arya et al., 2012):

\[n_x = \frac{z^2 \cdot S_x(1 - S_x)}{d^2} \]

nx = taille d’échantillon requise pour la pathologie X
z = valeur du percentile (1-0,05/2=0,975) de la Loi Normale centrée réduite (valeur type de 1,96)
Sx = estimation de la séroprévalence pour la pathologie X (issue de la littérature)
d = marge d’erreur acceptable
Si Sx est compris entre 10 et 90 %, alors d=0,05
Si Sx<10 % (maladie rare) alors d= (Px/2)
Si Sx>90 % (maladie très fréquente) alors d= (1-Px/2)

La valeur de Sx est déterminée grâce aux données disponibles dans la littérature (voir Tableau 2). Le nombre de sujets nécessaire correspond au nombre de sujets à inclure pour obtenir une précision de l’estimation de la séroprévalence de +/-5 % pour les pathologies communes, une précision de +/-Sx/2 pour les pathologies rares et une précision de +/-1-Sx/2 pour les maladies très fréquentes.

3.2.1 Nombre de sujets nécessaire pour répondre à l’objectif principal
Selon les données de la littérature, la séroprévalence de l’hépatite E dans le sud-est de la France serait de 50 % dans la population adulte (Mansuy et al., 2016). Afin d’obtenir des estimations de notre indicateur avec une précision de 5 %, il est nécessaire d’inclure 384 sujets âgés de 18 ans ou plus dans chaque région de l’étude.
3.2.2 Nombre de sujets nécessaires pour répondre aux objectifs secondaires

Comme indiqué dans le tableau 2, les sujets recrutés permettront également d’estimer les séroprévalences régionales des pathologies suivantes : hépatite A, hépatite B, hépatite C, rougeole, rubéole, oreillons et borréliose de Lyme.

Si on considère une séroprévalence minimale de 0,01 % pour les arboviroses et maladies parasitaires (Levy-Bruhl et al., 1998 ; Mansuy et al., 2011 ; Levy-Bruhl, 2013 ; Gergely et al., 2014b), il faudra recruter au moins 1521 sujets (tableau 2) (Levy-Bruhl et al., 1998 ; Mansuy et al., 2011 ; Levy-Bruhl, 2013 ; Gergely et al., 2014b) pour estimer une prévalence inter-régionale sur l’ensemble des régions Corse, PACA et Occitanie, avec les niveaux de précision détaillés ci-dessus.

3.2.3 Période d’étude

La période d’inclusion sera de deux ans (1er septembre 2017 au 1er septembre 2019).
Table 2 : Listes des agents pathogènes et nombre de sujets nécessaires

<table>
<thead>
<tr>
<th>Agents pathogènes</th>
<th>Séroprévalence pop >18 ans (en proportion)</th>
<th>Nombre sujets nécessaires N par niveau géographique</th>
<th>Géographie</th>
<th>Age population cible</th>
<th>Bibliographie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectif principal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Hépatite E</td>
<td>0,50</td>
<td>384</td>
<td>régional</td>
<td>>18 ans</td>
<td>(Mansuy et al., 2011 ; Mansuy et al., 2015 ; Mansuy et al., 2016)</td>
</tr>
<tr>
<td>Objectifs secondaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Hépatite B</td>
<td>0,05</td>
<td>292</td>
<td>régional</td>
<td>>18 ans</td>
<td>(Gergely et al., 2014a)</td>
</tr>
<tr>
<td>Virus Hépatite A</td>
<td>0,5</td>
<td>384</td>
<td>régional</td>
<td>>18 ans</td>
<td></td>
</tr>
<tr>
<td>Morbillivirus</td>
<td>0,92</td>
<td>177</td>
<td>régional</td>
<td>>18 ans</td>
<td>(Lepoutre et al., 2013)</td>
</tr>
<tr>
<td>Rubulavirus</td>
<td>0,86</td>
<td>185</td>
<td>régional</td>
<td>>18 ans</td>
<td></td>
</tr>
<tr>
<td>Rubella virus</td>
<td>0,92</td>
<td>177</td>
<td>régional</td>
<td>>18 ans</td>
<td></td>
</tr>
<tr>
<td>Virus Toscana</td>
<td>0,07</td>
<td>204</td>
<td>régional</td>
<td>>18 ans</td>
<td></td>
</tr>
<tr>
<td>Virus Hépatite C</td>
<td>0,05</td>
<td>292</td>
<td>régional</td>
<td>>18 ans</td>
<td>(Lepoutre et al., 2013)</td>
</tr>
<tr>
<td>Borrelia burgdorferi</td>
<td>0,27</td>
<td>303</td>
<td>régional</td>
<td>>18 ans</td>
<td>(Thorin et al., 2008)</td>
</tr>
<tr>
<td>Virus West Nile</td>
<td>0,01</td>
<td>1521</td>
<td>Interrégional</td>
<td>>18 ans</td>
<td>Pas de données</td>
</tr>
<tr>
<td>DENV</td>
<td>0,01</td>
<td>1521</td>
<td>Interrégional</td>
<td>>18 ans</td>
<td>Pas de données</td>
</tr>
<tr>
<td>Virus chikungunya</td>
<td>0,01</td>
<td>1521</td>
<td>Interrégional</td>
<td>>18 ans</td>
<td>Pas de données</td>
</tr>
<tr>
<td>Usutu, Zika</td>
<td>0,01</td>
<td>1521</td>
<td>Interrégional</td>
<td>>18 ans</td>
<td>Pas de données</td>
</tr>
<tr>
<td>Clostridium tetani</td>
<td>0,98</td>
<td>753</td>
<td>Interrégional</td>
<td>>18 ans</td>
<td>(Launay et al., 2009)</td>
</tr>
<tr>
<td>Schistosome hematobium</td>
<td>0,01</td>
<td>1521</td>
<td>Interrégional</td>
<td>>18 ans</td>
<td>Pas de données</td>
</tr>
</tbody>
</table>
3.3 Modalités pratiques d’échantillonnage

Il est prévu de demander à chaque médecin participant d’inclure 48 patients en deux ans. Afin de garantir le recrutement des sujets nécessaires, nous nous positionnons dans le cadre d’un scenario peu favorable dans lequel :
- Seul 60 % des MGL acceptant de participer à l’étude vont inclure 1 patient ou plus (médecin participant) ;
- les médecins participant vont inclure en moyenne 50 % des patients demandés (24 patients)

Afin de recruter au minimum de 384 sujets par région et garantir une représentativité géographique des populations au sein de ces régions, il est prévu de recruter 106 MGL (27 en Corse, 38 en PACA et 41 en Occitanie). Ceci permettra d’inclure 384 patients en Corse, 543 en PACA et 594 en Occitanie.

La répartition des médecins recrutés en fonction des zones géographique est détaillée dans le tableau 3.

3.3.1 Sélection des médecins généralistes

L’étude sera proposée à tous les MGL de l’Antenne Méditerranée (PACA, Corse et Occitanie) du réseau Sentinelles (n = 281) (Figure 1) et à d’autres médecins généralistes libéraux non-inscrits au réseau si nécessaire. Les médecins seront recrutés par mail et par téléphone.

Figure 3. Nombre de médecins généralistes inscrits au réseau Sentinelles dans les régions Corse, PACA et Occitanie, France métropolitaine

Les médecins seront sélectionnés dans chaque région en respectant la répartition par zone géographique présentée dans le tableau 3. La sélection prendra également en compte (autant que possible) les zones urbaines, péri-urbaines, et rurales. Des médecins des différentes zones devront être représentés.
Tableau 3 : Nombre de médecins généralistes libéraux à recruter en fonction des différentes zones géographiques (Source : Ordre national des médecins)

<table>
<thead>
<tr>
<th>Zones géographiques</th>
<th>Nombre de MG libéraux</th>
<th>Proportion par rapport à l’ensemble des MG</th>
<th>NOMBRE MG A RECRUTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORSE (micros régions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Bastia</td>
<td>93</td>
<td>30,7</td>
<td>8</td>
</tr>
<tr>
<td>Côte Orientale</td>
<td>33</td>
<td>10,9</td>
<td>2</td>
</tr>
<tr>
<td>Balagne</td>
<td>23</td>
<td>7,6</td>
<td>2</td>
</tr>
<tr>
<td>Centre Corse</td>
<td>12</td>
<td>4,0</td>
<td>1</td>
</tr>
<tr>
<td>Haute Corse</td>
<td>161</td>
<td>53,1</td>
<td>13</td>
</tr>
<tr>
<td>Grand Ajaccio</td>
<td>101</td>
<td>33,3</td>
<td>9</td>
</tr>
<tr>
<td>Grand Valinco</td>
<td>11</td>
<td>3,6</td>
<td>2</td>
</tr>
<tr>
<td>Côte Ouest</td>
<td>6</td>
<td>2,0</td>
<td>1</td>
</tr>
<tr>
<td>Sud Corse</td>
<td>24</td>
<td>8,0</td>
<td>2</td>
</tr>
<tr>
<td>Corse du Sud</td>
<td>142</td>
<td>46,9</td>
<td>14</td>
</tr>
<tr>
<td>TOTAL</td>
<td>303</td>
<td>100 %</td>
<td>27</td>
</tr>
<tr>
<td>PACA (départements)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouches DU RONE</td>
<td>2143</td>
<td>41,7</td>
<td>15</td>
</tr>
<tr>
<td>Vaucluse</td>
<td>496</td>
<td>9,6</td>
<td>4</td>
</tr>
<tr>
<td>Var</td>
<td>1007</td>
<td>19,6</td>
<td>7</td>
</tr>
<tr>
<td>Alpes Maritimes</td>
<td>1166</td>
<td>22,7</td>
<td>8</td>
</tr>
<tr>
<td>Alpes Haute Provence</td>
<td>178</td>
<td>3,5</td>
<td>2</td>
</tr>
<tr>
<td>Haute Alpes</td>
<td>152</td>
<td>3,0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5142</td>
<td>100 %</td>
<td>38</td>
</tr>
<tr>
<td>Occitanie (départements)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aude</td>
<td>319</td>
<td>5,7</td>
<td>2</td>
</tr>
<tr>
<td>Pyrenees Orientales</td>
<td>545</td>
<td>9,7</td>
<td>4</td>
</tr>
<tr>
<td>Herault</td>
<td>1206</td>
<td>21,5</td>
<td>8</td>
</tr>
<tr>
<td>Gard</td>
<td>672</td>
<td>12,0</td>
<td>5</td>
</tr>
<tr>
<td>Lozere</td>
<td>56</td>
<td>1,0</td>
<td>1</td>
</tr>
<tr>
<td>Languedoc-Roussillon</td>
<td>2798</td>
<td>49,9</td>
<td>20</td>
</tr>
<tr>
<td>Aveyron</td>
<td>218</td>
<td>3,9</td>
<td>1</td>
</tr>
<tr>
<td>Lot</td>
<td>159</td>
<td>2,8</td>
<td>1</td>
</tr>
<tr>
<td>Tarn</td>
<td>345</td>
<td>6,1</td>
<td>3</td>
</tr>
<tr>
<td>Garonne</td>
<td>203</td>
<td>3,6</td>
<td>2</td>
</tr>
<tr>
<td>Gers</td>
<td>177</td>
<td>3,2</td>
<td>1</td>
</tr>
<tr>
<td>Haute Pyrenees</td>
<td>244</td>
<td>4,3</td>
<td>2</td>
</tr>
<tr>
<td>Haute Garonne</td>
<td>1329</td>
<td>23,7</td>
<td>10</td>
</tr>
<tr>
<td>Ariège</td>
<td>139</td>
<td>2,5</td>
<td>1</td>
</tr>
<tr>
<td>Midi-Pyrénées</td>
<td>2814</td>
<td>50,1</td>
<td>21</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5 612</td>
<td>100 %</td>
<td>41</td>
</tr>
</tbody>
</table>
3.3.2 Sélection des sujets
Les médecins devront inclure les premiers patients éligibles à l'étude durant chaque créneau indiqué sur la fiche d'inclusion (exemple en Annexe 1). Si certains médecins, en raison de leur calendrier, de leur activité ou du refus des patients, ne peuvent inclure de patients aux créneaux indiqués sur la fiche d'inclusion, ils pourront les inclure dans les créneaux suivants disponibles. Pour les patients qui ne souhaitent pas participer, le médecin devra également remplir le motif du refus, l'âge et le sexe, dans une partie un tableau spécifique du cahier d'inclusion.

Pour répondre aux objectifs, le nombre minimum de patients à inclure pour chaque médecin ne concernera que les adultes. C'est-à-dire que les enfants de plus de 5 ans seront inclus de façon supplémentaire à l'objectif donné à chaque médecin. La bibliographie étant très pauvre sur les séroprévalences chez les enfants, il ne faut pas exclure la possibilité d'avoir une vision sur ces classes d'âge. Cependant la faisabilité des prélèvements chez les enfants est encore incertaine, et l'un des objectifs principaux de la phase pilote sera de voir comment réagit la patientèle des médecins à ces prélèvements.

Critères d'éligibilité
- Patients, masculin ou féminin bénéficiaires ou affiliés à un régime de sécurité sociale ;
- Agés de plus de 5 ans ;
- Résidence principale dans l'une des régions de l'étude ;
- Vus en consultation ;
- Pas de participation à des essais cliniques ;
- Ayant une bonne compréhension de la langue française et absence de troubles cognitifs afin de permettre la participation ;

Critères d'inclusion
- Patient présentant l'ensemble des critères d'éligibilité ;
- Ayant accepté de participer à l'étude et signé le formulaire de consentement ;
- Ayant accepté de réaliser le prélèvement de sang par ponction capillaire au cabinet ;
- Ayant accepté de remplir l'auto-questionnaire au cabinet

Critères de non inclusion
- Patient ne présentant pas l'ensemble des critères d'éligibilité et/ou d'inclusion
- Ayant reçu des immunoglobulines ou une transfusion dans les 6 mois précédant l'enquête ;
- Femmes enceintes ;
• Vulnérables au sens de la loi française.

3.3.3 Procédure d’inclusion dans l’étude

Information du patient :

Chaque MG participant équiperà son cabinet d’affiches et de fiches d’information décrivant la thématique de l’étude, l’objectif principal et le mode d’inclusion des patients (Annexe 2 et 3).

Pour chaque patient éligible, le médecin devra :

Expliquer l’étude au patient, lui remettre la notice d’information selon l’âge (Annexe 4), lui laisser un temps de réflexion et répondre aux éventuelles questions. Des plaquettes d’information pour les mineurs sont également disponibles selon trois catégories d’âge : moins de 7 ans, 7-12 ans et adolescents (Annexe 5).

S’il accepte, le médecin doit :

- Réaliser les différentes étapes pour le prélèvement (désinfection, ponction, collecte) (Annexe 5)
- Remplir sa partie du questionnaire et faire signer au patient le formulaire de consentement ou un responsable/tuteur légal dans le cas d’un enfant ;
- Faire remplir le questionnaire au patient ;
- Centrifuger le prélèvement et le garder au frais avant envoi (si possible) ;
- Envoyer rapidement le prélèvement et le questionnaire au laboratoire de Virologie de l’Université de Corse (à l’aide du kit retour fourni).
- Retourner le formulaire de consentement au laboratoire de Virologie de l’Université de Corse, indépendamment du prélèvement (enveloppe retour fournie) ;
- Remplir le cahier d’inclusion/liaison pour le retour de résultats au patient (Annexe 7) ;

Si le patient refuse, le médecin doit :

- Remplir le tableau « refus » du cahier d’inclusion en notant le motif du refus, l’âge et le sexe du patient

Le patient sera inclus dans l’étude si réception par le laboratoire de l’Université de Corse du :

- Formulaire de consentement rempli et signé ;
- Prélèvement capillaire de sang exploitable ;
- Questionnaire rempli

3.3.4 Formation des médecins participants

La formation des médecins sera effectuée par téléphone par un épidémiologiste. L’utilisation des kits, le contenu du colis, les différents documents et le mode opératoire leur seront expliqués. L’entretien servira également pour répondre aux éventuelles questions du médecin.
3.3.5 Mise en place du matériel chez les médecins du réseau

Les médecins participants recevront par envoi postal, un peu avant le début de la période de l’étude, le matériel nécessaire pour effectuer 10 prélèvements, c’est-à-dire 10 kits de prélèvements comprenant chacun :

- Gants à usage unique ;
- Antiseptique ;
- Compresse de gaze ;
- Auto-piquer ;
- Tube collecteur gélose (sérum) ;
- Entonnoir de collecte
- Un triple emballage pour le retour du prélèvement, pré-timbré et pré-libellée à l’adresse du laboratoire ;
- Questionnaire médecin/patient à remplir à chaque inclusion et à joindre au prélèvement

Le médecin recevra une micro centrifugeuse pour séparer le sérum et l’ensemble des documents nécessaires à l’étude. Le matériel de prélèvement sera renouvelé de façon automatique, lorsqu’au moins 6 prélèvements auront été adressés au laboratoire.

3.3.6 Réalisation et envoi du prélèvement

Les prélèvements seront réalisés par ponction capillaire de sang à l’aide du matériel fourni au cabinet (Annexe 6). Une étape de désinfection des mains du patient est évidemment indispensable, ainsi que le port des gants par le médecin. Une fois la ponction réalisée, le sang sera récolté dans un tube grâce à un mini-entonnoir. Ce tube sera centrifugé par le médecin pendant 15 minutes à vitesse maximale pour séparer le sérum (après un temps de repos du tube en position verticale d’au moins 30 minutes après le prélèvement). Les tubes seront ensuite stockés, si possible, à 2-4 °C avant envoi. Une fois le prélèvement réalisé, le médecin remplira un questionnaire avec le patient. Le kit et le questionnaire seront adressés par voie postale au laboratoire correspondant dans le respect du triple emballage (Annexe 8), agent infectieux de catégorie B, classification UN 3373. Le médecin sera chargé de poster les prélèvements le plus vite possible et au maximum de façon hebdomadaire.

3.3.7 Traitement échantillons au laboratoire

Les prélèvements seront réceptionnés par le laboratoire de virologie de l’Université de Corse. Les échantillons (code anonyme) seront aliquotés à la réception et intégrés dans la base EPIVIROI. Les prélèvements seront ensuite envoyés à l’Université d’Aix Marseille, dans l’équipe 190 « Emergences des pathologies virales » pour y être analysés.

Les analyses sérologiques concernant la détection des anticorps anti-VHE (hépatite E), seront effectuées au laboratoire de virologie de l’Université de Corse. Le kit utilisé sera Wantai HEV IgG enzyme immunoassay (Wantai Biologic Pharmacy Enterprise, Beijing, Chine) qui a une sensibilité de
(87 %) et une spécificité de (95 %) selon le Centre National de Référence VHA-VHE de Toulouse. Ce kit a également été choisi pour que les séroprévalences obtenues soient comparables aux études majeures de séroprévalences ayant été effectuées en France (Mansuy et al., 2011 ; Mansuy et al., 2016). Pour des raisons budgétaires, les analyses ne pourront être réalisées que lorsque 90 prélèvements seront réceptionnés, cela afin de faire une plaque d’analyse complète.

Les analyses sérologiques concernant les 15 autres pathogènes étudiés seront effectuées à l’Université d’Aix Marseille, par le laboratoire partenaire de l’équipe 190 « Emergences des pathologies virales ». Voici le tableau récapitulatif des techniques de détection utilisées selon les pathogènes :

<table>
<thead>
<tr>
<th>Agent infectieux</th>
<th>Technique (à modifier avec titre immunoprotection etc.)</th>
<th>Marqueur sérologique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Hépatite B</td>
<td>EIA</td>
<td>Ac anti HBs / Ac anti HBc / Ag HBs</td>
</tr>
<tr>
<td>Virus Hépatite A</td>
<td>EIA</td>
<td>IgG</td>
</tr>
<tr>
<td>Rubella virus (rubéole)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbillivirus (rougeole)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubulavirus (oreillons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Hépatite C</td>
<td>ELISA</td>
<td>IgG</td>
</tr>
<tr>
<td>Virus chikungunya (alphavirus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus West Nile</td>
<td>ELISA et confirmation par séroneutralisation</td>
<td>IgG</td>
</tr>
<tr>
<td>Virus de la dengue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Usutu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Zika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus Toscana</td>
<td>Séroneutralisation</td>
<td>/</td>
</tr>
<tr>
<td>Clostridium tetani</td>
<td>Point of care test</td>
<td>/</td>
</tr>
<tr>
<td>Schistosome hematobium</td>
<td>ELISA</td>
<td>/</td>
</tr>
<tr>
<td>Borrelia burgdorfer</td>
<td>EIA</td>
<td>IgG</td>
</tr>
<tr>
<td>Confirmation par Western Blot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les résultats de sérologies seront communiqués aux médecins participant dès le résultat disponible.

3.3.8 Circuit de traitement de l’information

Exemple : 17 (année de prélèvement) 1234 (identifiant sentinelles) 01(numéro patient)

Ce numéro sera indiqué :
- sur les tubes de prélèvement ;
• les questionnaires ;
• le registre d'inclusion médecin-patient, seul le médecin aura accès à ce registre (registre complété au cabinet, non envoyé au chargé de l'étude ➔ utilisation purement informationnel, lien entre le médecin et son patient).

Si le médecin n’est pas un médecin Sentinelles, il lui sera proposé de faire partie du réseau, que ce soit pour une activité de surveillance classique, ou pour ne participer qu’aux études ponctuelles. Cela lui permettra de bénéficier à l’accès de ses résultats sur SentiMed et d’avoir un numéro d’identification.

3.3.9 Données issues du questionnaire d’inclusion
Un questionnaire anonyme validé par le comité scientifique sera proposé par le médecin au patient. Le patient devra le remplir au cabinet et le rendre au médecin, pour qu’il puisse l’envoyer avec le prélèvement au laboratoire.

3.3.10 Mode de circulation des données
• Le médecin réalisera le prélèvement capillaire de sang lors de la consultation en suivant le protocole fourni avec le kit de prélèvement. Ce prélèvement sera retourné dans l’enveloppe bulle préaffranchie et pré-libellée à l’adresse du laboratoire de virologie de l’Université de Corse.
• Le médecin remplira la première partie du questionnaire avec le patient
• Puis, le médecin donnera au patient le questionnaire, qu’il devra remplir. Ce questionnaire sera réalisé par le patient, au cabinet. Le questionnaire sur format papier sera envoyé à l’aide d’une enveloppe bulle préaffranchie et pré-libellée à l’adresse du laboratoire de virologie de l’Université de Corse rapidement.
• Les réponses aux questionnaires ainsi que les résultats des analyses sérologiques réalisées sur les prélèvements seront enregistrées à l’aide du site EPIVIRO. Les formulaires papier créés seront archivés avec les documents de l’étude dans une armoire sécurisée.
• Les prélèvements biologiques seront transportés par voie postale sous triple emballage (agent infectieux de catégorie B, classification ONU 3373), fourni par le laboratoire.
• Les résultats des analyses sérologiques réalisées par le laboratoire seront transmis au médecin préleveur sur un site sécurisé. Il s’agit du site médecin du réseau Sentinelles « Sentimed ». Le médecin utilisera des identifiants pour avoir accès à son compte en ligne. Il sera remis à chaque médecin un cahier de liaison qui leur permettra d’associer les résultats sérologiques au nom du patient.
• La base de données constituée avec les réponses des questionnaires et les données sérologiques sera identifiée par numéro d’identifiant patient et aucune donnée de patronyme ne sera enregistrée sur le fichier électronique ainsi créé.
• Les consentements seront réceptionnés, gérés et stockés par une personne de l’EA BIOSCOPE extérieure à l’étude.

• À la fin de l’étude, un rapport avec les tables statistiques et les conclusions sera édité pour analyse et discussion des données par le comité scientifique et les responsables du projet. Une publication scientifique sera rédigée. Aucune donnée nominative ne sera diffusée.

3.4 Phase pilote

Une phase pilote sera réalisée en Corse sur la période du 1er juin au 31 août 2017. Pour cela, 10 médecins seront recrutés parmi les médecins participant les plus régulièrement à la surveillance virologique des syndromes grippaux coordonnée par le réseau Sentinelles. Durant cette phase pilote, chaque médecin participant devra réaliser 20 prélèvements (6-7 par mois). Pour cela, les médecins acceptant de participer recevront le matériel nécessaire par colis. L’ensemble des étapes de cette phase pilote, du recrutement à l’envoi de l’échantillon, sera identique au protocole décrit ci-dessus. Cette phase pilote permettra éventuellement d’ajuster le mode opératoire et le circuit des données, mais surtout d’évaluer la faisabilité de l’étude sur les enfants. Selon le nombre d’enfants prélevés parmi l’ensemble des sujets inclus et les retours des médecins participants, l’étude sera :

- Soit maintenue chez les plus de 5 ans et dans les mêmes conditions que décrit ci-dessus
- Soit effectuée uniquement sur la population adulte à partir de septembre 2017.

4 ANALYSE DES DONNEES

4.1 Description et représentativité des populations de l’étude

Les deux populations participant à l’étude, patients et médecins généralistes, seront décrites selon les variables recueillies dans le questionnaire papier pour les patients (géographiques et socio-démographiques) et recueillies à l’inclusion pour les médecins.

L’analyse de la représentativité des médecins généralistes participant à l’étude (dans chaque région) sera effectuée. Pour cela, la population des médecins de l’étude sera décrite et comparée à l’ensemble des médecins généralistes exerçant dans la même région.

Les patients inclus dans l’étude seront décrits et comparés à la patientèle de médecine générale ou à défaut de données disponibles, à la population totale de chaque région grâce aux données de l’Insee ou issues de sondage comme le Baromètre santé. Cela afin de voir si les patients inclus sont représentatifs de la population consultant en médecine générale de la région.
4.2 Volet « séroprévalence »

L'objectif principal de notre d'étude est d’estimer la séroprévalence régionale de l’hépatite E dans les trois régions du sud de la France (Corse, PACA, Occitanie) chez la population adulte vue en consultation de médecine générale. Si le nombre de prélèvements nécessaire est obtenu dans chaque région (384), une séroprévalence de l’hépatite E sera estimée dans chaque région assortie d’un intervalle de confiance à 95 %.

Concernant nos objectifs secondaires :

- Une séroprévalence régionale en Corse, Occitanie, PACA sera estimée pour les pathologies suivantes : rougeole, rubéole, oreillons, hépatite A, B et C. Un intervalle de confiance à 95 % de cette proportion sera calculé.

- Une séroprévalence interrégionale « Sud » prenant en compte l’ensemble des prélèvements de l’étude sera estimée assortie d’un intervalle de confiance à 95 % pour les pathogènes suivants : West Nile, dengue, chikungunya, Zika, Usutu, Toscana, Borrelia burgdorferi, Clostridium tetani, Schistosome hematobium

L’ensemble des patients ayant un prélèvement réalisé et un questionnaire associé sera intégré dans l’étude et constituera notre population d’étude. La séroprévalence brute de la pathologie X dans la zone géographique Z (région ou inter-région), S(X,Z), sera estimée par un quotient : le dénominateur correspondra au nombre total de prélèvement de la zone géographique Z et le numérateur correspondra au nombre de prélèvements positifs à la pathologie X parmi le nombre total de prélèvements considérés au dénominateur (dans la zone Z).

\[
S_{\text{brute}}(X,Z) = \frac{np(X,Z)}{nt(X,Z)} \times 100
\]

où Z est la zone géographique (région : Corse, PACA ou Occitanie, ou inter-région), X la pathologie, np(X,Z) le nombre de prélèvements positifs pour X parmi les prélèvements testés pour X dans Z et nt(X,Z) le nombre de prélèvements testés pour X dans Z.

Cependant, l’échantillon de patients inclus dans notre étude ne sera probablement pas représentatif de l’ensemble de la population consultant en médecine générale. En effet, les probabilités d’inclusion des patients dans l’étude seront, entre autres, influencées par le niveau recours aux soins en médecine générale des patients. Ainsi les catégories de patients consultant souvent leur médecin généraliste (par exemple les personnes âgées) seront surreprésentées dans l’échantillon par rapport à la population.
consultant en médecine générale. Hors, les niveaux de séroprévalence sont différents selon certaines caractéristiques individuelles des patients.

Afin de diminuer le biais d’estimation de la séroprévalence due aux erreurs d’échantillonnage (sélection aléatoire reposant sur le niveau consultation et pas sur le niveau patient, refus de participation des patients, …), nous utiliserons des méthodes issues de la théorie des sondages pour redresser les estimations.

Nous utiliserons particulièrement la méthode de post-stratification, qui consiste à partitionner la population en plusieurs sous-ensembles, appelés strates. Dans chaque strate, le nombre observé dans l’échantillon de patients positifs à X est multiplié par un quotient appelé poids de sondage. Ces poids de sondage correspondent à l’inverse de la probabilité d’inclusion du patient dans l’échantillon (calculé a posteriori). La séroprévalence totale pour X est finalement estimée comme une somme pondérée par les poids de sondage des nombres observés dans l’échantillon de patients positifs à X par strate, divisée par la taille de la population totale.

$$S(X)_{\text{redressée}} = \left(\sum_{s \in S} \frac{\text{pop}_s}{\text{nt}(X)_s} \times np(X)_s \right) / \text{pop} \times 100$$

Où le poids de sondage pour la strate s est : $$d_s = \frac{\text{pop}_s}{\text{nt}(X)_s}$$.S représente l’ensemble des strates s de la population, $$np(X)_s$$ (resp. $$np(X)_s$$) le nombre de patients positifs (resp. testés) pour X dans la strate s, pop la taille de la population totale et pop_s la taille de la population de la strate s.

Afin de d’identifier le découpage le plus optimal de la population en strates pour l’estimation de la séroprévalence, il est nécessaire d’identifier (1) les caractéristiques des patients pouvant influencer la séropositivité aux différents pathogènes testés (2) les sources de données de référence pour la population totale disponibles (calcul poids de sondage). L’âge, la région ou encore le sexe apparaissent comme des facteurs pouvant être liés à la séropositivité aux différents pathogènes. Les seules données dont nous disposons actuellement et qui permettent de calculer des poids de sondage par tranche d’âge, sexe et région sont les données de population issues de l’Insee.

La séroprévalence de chaque pathologie sera donc estimée à l’aide d’un estimateur post-stratifié, pour lequel les strates seront, dans la mesure du possible, définies de façon croisée par tranche d’âge, sexe et région de résidence. Dans le cas où des strates ne comporterait pas ou trop peu de patients, le découpage sera revu afin d’augmenter leurs tailles.

4.3 Volet « facteurs de risque »
L’étude des facteurs associés à une séropositivité aux différentes pathologies étudiées se déroulera en deux temps.
Dans un premier temps, une analyse descriptive sera réalisée sur les variables du volet « facteurs sociodémographiques » afin de comparer le groupe de sujets présentant une séropositivité pour une pathologie donnée et le groupe de sujets séronégatifs pour cette même pathologie. Les variables qualitatives seront décrites et comparées entre les deux groupes à l’aide du test du Chi-2 ou du test exact de Fisher, si ce premier ne s’applique pas. Les variables quantitatives seront décrites et comparées entre les deux groupes à l’aide du test de comparaison de moyennes observées ou du test de Wilcoxon. Un risque de première espèce de 5 % sera choisi comme seuil de significativité pour l’interprétation des tests statistiques.

Par la suite, l’effet de chaque variable explicative sur une séropositivité ou non sera étudié à l’aide d’un modèle logistique univarié. Ces variables pourront être considérées comme quantitatives ou qualitatives. La valeur de la probabilité critique du test de Wald sera utilisée pour identifier si l’effet de la variable sur la séropositivité pour une pathologie donnée est significatif. Chaque variable sera utilisé dans le modèle d’analyse multivariée si son seuil de significativité est inférieur à 0,20.

Le questionnaire étant axé principalement pour étudier l’hépatite A et l’hépatite E, les analyses ci-dessous seront effectuées uniquement pour ces deux pathologies.

Dans un deuxième temps, une analyse multivariée des facteurs sur une séropositivité ou non pour une pathologie donnée sera effectuée à l’aide d’un modèle de régression logistique incluant les variables retenues à l’étape précédente. Les variables présentant de fortes corrélations entre elles seront départagées ou combinées pour être incluses dans le modèle à l’aide des résultats des tests d’adéquation du modèle logistique. Le meilleur modèle sera déterminé par l’analyse du comportement des variables grâce à des procédures de sélection pas à pas descendante, avec un seuil de significativité à 5 %. L’effet de chaque facteur sera évalué par le test de significativité de Wald. L’odds ratio et son intervalle de confiance à 95 % seront estimés pour chaque facteur retenu dans le modèle final.

5 BENEFICES ET RISQUES DE CETTE ETUDE

La balance bénéfice/risque de cette étude est satisfaisante. Au niveau individuel, cette étude n’implique aucun risque pour le patient. Le prélèvement dont il fait l’objet est très rapide et indolore. Tout au plus, le patient ressent une certaine gêne au moment de la ponction.

Au niveau individuel, cette étude apporte peu de bénéfice direct au patient qui s’implique dans ce projet. Sa prise en charge immédiate par le médecin reste identique quelques soient les résultats des analyses sérologiques faites sur les prélèvements qu’il a envoyé au laboratoire.

Le médecin reçoit le résultat de l’analyse sérologiques, ce qui lui permet si nécessaire un meilleur suivi et prise en charge du patient.
Au niveau collectif, les bénéfices attendus de cette étude sont importants. Le projet fournira de précieuses données de réceptivité de la population du sud de la France vis-à-vis d’agents pathogènes/maladies recherchés. Aucun risque au niveau collectif n’est perçu. Le bénéfice est donc bien supérieur au risque dans cette étude.

6 CREATION D’UNE COLLECTION BIOLOGIQUE
Les échantillons seront étiquetés (code interne laboratoire) conservés à -80°C, dans des congélateurs dont la température est surveillée en continu et qui sont reliés à un centre d’alarme en cas de variations anormales de température. Les prélèvements ainsi collectés seront enregistrés et stockés par l’EA7310 au laboratoire de virologie de l’Université de Corse situé sur le Campus Grimaldi, 20250 Corte sous la direction d’Alessandra Falchi, MCU et directrice de l’EA 7310.
La gestion du stockage des échantillons permet : 1) le référencement des échantillons par type de prélèvements ; 2) de gérer le stockage (emplacement de congélation) ; 3) permet la traçabilité des mouvements des échantillons (entrées, sorties, réintégration) ; 4) contrôle la durée de conservation des échantillons ; 5) permet l’anonymisation des échantillons.

7 CONSIDERATION ETHIQUES ET LEGALES
a) Cadre réglementaire de l’étude

b) Information des sujets et consentement éclairé
Le médecin présentera l’étude au patient, lui remettra une lettre d’information et recueillera son consentement écrit. Le médecin l’informera notamment de la nature et de la finalité de l’étude, les données collectées, des personnes physiques ou morales destinataires de ces données, et de son droit d’accès, de rectification ou d’opposition au traitement de ces données.
c) Commission nationale de l’information et des libertés
Une déclaration sera faite à la CNIL, après avis favorable du CPP et de l’ANSM (procédure simplifié). Ni le nom, ni les initiales des patients relevés dans le formulaire de consentement ne seront pas enregistré dans les bases de données où les patients seront identifiés par une double numérotation (numéro de médecin et numéro des patients) qui apparaîtra sur les documents de recueil des données. Aucune donnée nominative, directement ou indirectement nominative, ne sera transmise à quiconque. Seules des données anonymes et résumées seront communiquées dans le cadre de l’analyse statistique.

d) Comité d’éthique de recherche

e) Utilisation des résultats de l’étude
L’investigateur s’engage à n’utiliser ces informations que sous la conduite de l’étude et pour aucun autre motif sauf accord préalable écrit du responsable de chaque organisme. Les résultats de l’étude pourront faire l’objet de publication dans les journaux scientifiques ou de présentation lors de réunions scientifiques. Les publications seront rédigées conjointement par les organismes participant à l’étude, le choix des personnes désignées comme auteurs répondra aux critères de bonne pratique scientifique et correspondra à l’accord conjoint et préalable des partenaires.

8 CALENDRIER

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avril 2017</td>
<td>Recrutement, Formation et Equipement des médecins pour la phase pilote</td>
</tr>
<tr>
<td>Mai à Aout 2017</td>
<td>Phase Pilote + Recrutement/Equipement des médecins pour l’étude</td>
</tr>
<tr>
<td>Septembre 2017 à Décembre 2019</td>
<td>Etude / Campagne de prélèvements</td>
</tr>
<tr>
<td>Début 2020</td>
<td>Rédaction du bilan de l’étude</td>
</tr>
</tbody>
</table>
9 REFERENCES
CNR (2014). "Rapport d'activité de l'année 2013 - Virus des hépatites à transmission entérique VHA et VHE."
ECDC (2016). Distribution of West Nile fever cases by affected areas, European region Mediterranean basin.

10 ANNEXES

10.1 Annexe 1 : Exemple grille vierge pour d’inclusion des sujets

<table>
<thead>
<tr>
<th>Nb du sujet</th>
<th>Lundi Matin</th>
<th>Lundi Après-midi</th>
<th>Lundi Soir</th>
<th>Mardi Matin</th>
<th>Mardi Après-midi</th>
<th>Mardi Soir</th>
<th>Mercredi Matin</th>
<th>Mercredi Après-midi</th>
<th>Mercredi Soir</th>
<th>Jeudi Matin</th>
<th>Jeudi Après-midi</th>
<th>Jeudi Soir</th>
<th>Vendredi Matin</th>
<th>Vendredi Après-midi</th>
<th>Vendredi Soir</th>
<th>Samedi Matin</th>
<th>Samedi Après-midi</th>
<th>Samedi Soir</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Matin = début de journée - pause déjeuner / **Après-midi** = pause déjeuner - 17H00 / **Soirée** = 17H00 - fin de la journée
10.2 Annexe 2 : Affiche appel à participation pour les prélèvements en médecine générale

Appel à participation
Étude sur le degré d’exposition de la population du sud de la France aux principales maladies infectieuses

Recherche de volontaires
- Patients âgés de plus de 5 ans
- Vivant en PACA Corse et Occitanie
- Bénéficiaires ou affiliés à un régime de sécurité sociale

Votre médecin est susceptible de vous solliciter dans le cadre de cette étude. En participant, vous apporterez votre aide à la recherche médicale. Cette enquête est anonyme.

10.3 Annexe 3 Fiche information patient

LETTRE D’INFORMATION

SeroMed : degré d’exposition de la population du sud de la France au virus de l’hépatite E et à d’autres agents infectieux en médecine générale
Étude de séroprévalence menée en Corse, PACA et Occitanie

Promoteur de l’étude

Investigateur principal

Médecin investigateur
Dr………………
Tel :………………

Madame, Monsieur,

Nous vous proposons de participer à cette étude mise en place par l’Université des Corse, le réseau Sentinelles et l’INSERM. Nous vous présentons ici les informations nécessaires pour comprendre l’intérêt et le déroulement de l’étude, les bénéfices attendus, les contraintes et les risques prévisibles. Vous pourrez prendre le temps pour lire et comprendre ces informations de réfléchir à votre participation et pour demander au médecin responsable de l’étude de vous expliquer ce que vous n’auriez pas compris.

Après avoir obtenu les réponses satisfaisantes à vos questions et disposé d’un délai de réflexion suffisant, vous pourrez alors décider si vous voulez participer à cette étude ou non.

Participation volontaire
Votre participation à cette étude est entièrement volontaire et libre. Votre éventuel refus de participer n’aura aucune conséquence sur le type et sur la qualité de votre prise en charge, ainsi que sur vos relations avec le médecin investigateur. Si vous acceptez de participer, vous pourrez à tout moment quitter cette étude sans justification et conséquence sur la qualité de votre future prise en charge. Par ailleurs, vous pourrez
éventuellement être sorti(e) de l’étude par le médecin s’il l’estime nécessaire. Votre participation pourra également être interrompue en cas d’arrêt prématuré de l’étude.

But de l'étude

L’objectif de cette étude est de collecter des données sur le degré de protection de la population vis-à-vis de nombreuses pathologies à prévention vaccinale et d’autres maladies infectieuses. Les résultats nous permettront d’évaluer par exemple les effets du programme de vaccination, et dans le cas d’autres maladies infectieuses d’estimer leur fréquence, les populations à risque et donc d’orienter la mise en place des éventuels mesures de prévention. C’est pourquoi nous vous proposons de participer.

Bénéfice(s) attendus

Aucun bénéfice direct pour le patient.

Déroulement de l’étude

Présentation générale

Cette étude est menée en Corse par l’équipe d’accueil EA 7310 Bioscope Corse méditerranée durant la période 2017/2019. Pour ce projet, les questionnaires ainsi que les prélèvements seront analysés au laboratoire de virologie de l’Université de Corse. Une analyse serologique des prélèvements permettra de rechercher la présence d’anticorps contre les agents infectieux recherchés. Ces données biologiques associées aux éléments collectés avec les questionnaires permettront de répondre aux objectifs décrits précédemment.

Déroulement de votre participation à cette étude

Pour participer à cette étude, il vous est demandé de :

1. Signer le formulaire de consentement précisant les termes légaux de cette étude ;
2. Réaliser le prélèvement capillaire de sang lors de la consultation ;
3. Remplir le questionnaire d’inclusion avec le médecin ;
4. Réaliser l’autoquestionnaire au cabinet

Risques potentiels

Aucun risque pour le patient.

Frais médicaux

Votre collaboration à ce protocole de recherche biomédicale n’entraînera pas de participation financière de votre part. Conformément à la loi, tous les frais liés à l’étude seront pris en charge par le promoteur de l’étude.

La collection biologique

Les prélèvements effectués dans le cadre de cette étude peuvent être conservés et gardés dans le respect de la confidentialité, afin de constituer une collection d’échantillons biologiques, au sein du laboratoire de virologie de l’Université de Corse. Vous avez le droit de refuser que les prélèvements collectés soient conservés et vous pouvez demander la destruction de ses échantillons à tout moment. La conservation et l’utilisation ultérieure des échantillons prélévés pour cette étude est possible pour d’autres études biomédicales concernant uniquement la recherche des agents infectieux. Vous avez le droit de vous y opposer dans le formulaire de consentement.

Législation - confidentialité

Conformément aux articles L. 1121-1 et suivants du code de la santé publique :

- Le comité de protection des personnes Méditerranée Sud 1 a étudié ce projet de recherche et a émis un avis favorable à sa réalisation le xx/xx/xxx
- Une autorisation de l’ANSM en date du : …………………………………

Un contrat d’assurance « xxxxxx » a été souscrit par le promoteur de l’essai, « Université de Corse, EA 7310, Laboratoire de virologie Campus Grimaldi 20250 Corte » auprès de la compagnie : xxxxxxxx » pour couvrir les risques liés à cette recherche.

Toute information vous concernant recueillie pendant cet essai sera traitée de façon confidentielle. La gestion des fiches de consentement sera effectuée par une personne de l’EA7310 ne faisant pas partie de l’étude, afin qu’aucun lien ne soit fait avec le résultat d’analyse de vos échantillons. La publication des résultats de l’étude ne comportera aucun résultat individuel.

Traitement informatisé des données

Les données enregistrées à l’occasion de cette étude feront l’objet d’un traitement informatisé par le promoteur. S’agissant des informations de nature médicale, ce droit est exercé par l’intermédiaire du médecin ayant réalisé votre inclusion,
conformément à la loi 78-17 du 06 janvier 1978 relative à l’Informatique, aux fichiers et aux libertés, modifiée par la loi n°94-548 du 1er juillet 1994, relative au traitement des données nominatives ayant pour fin la recherche dans le domaine de la santé. Le projet a reçu une autorisation favorable de la CNIL en date du

Conformément à l’article L 1122-1 du code de la santé publique (loi de mars 2002 relative aux droits des malades) les résultats globaux de l’étude pourront vous être communiqués si vous le souhaitez.

Si vous avez des questions pendant votre participation à cette étude, vous pourrez contacter la personne responsable de l’étude, xxxxxxxxxxxxxxx

Vous êtes libre d’accepter ou de refuser de participer à cette étude. Cela n’influencera pas la qualité des soins qui vous seront prodigués.

Nous vous remercions d’avoir pris le temps de lire cette lettre d’information. Si vous êtes d’accord pour participer à cette recherche, nous vous invitons à signer le formulaire de consentement ci-joint.
10.4 Annexe 4 : Plaquettes information mineurs (moins de 7ans ; 7-12ans et adolescents) médecine générale
10.5 Annexe 5 : Mode opératoire de la ponction capillaire

Mode opératoire de la ponction capillaire

1. Le médecin doit :
 • Se désinfecter les mains et mettre des gants
 • Installer confortablement le patient

2. Choisir avec le patient le point de ponction (majeur ou annulaire)
 • Demander au patient de se laver les mains avec de l’eau savonneuse
 • Secouer la main vers le bas afin de faire affluer le sang vers le bout du doigt
 • Masser la paume vers l’extrémité du doigt à piquer
 • Aseptiser le point de ponction

3. Sortir l’auto-piqueur du kit fourni
 • Enlever le capuchon stérile en le faisant pivoter

4. Presser l’auto-piqueur sur le doigt et appuyer sur le bouton
 • Jeter l’auto-piqueur dans un contenant approprié

5. Ouvrir le tube « collecteur » et placer le petit entonnoir au dessus
 • Prélever le doigt du patient et faire couler le sang au niveau de l’entonnoir
 • Remplir le tube jusqu’à remplissage du tube, pour cela il faut masser le doigt et non presser fortement

6. Fermer le tube rempli en vissant le bouchon (clique)
 • Étiqueter le tube avec l’étiquette fournie et le code patient
 • Comprimer le point de ponction avec un tampon sec, puis enlever les gants et se laver les mains

7. Après 30 minutes centrifuger le tube pendant 10 min

 • Ne pas oublier de joindre le questionnaire
<table>
<thead>
<tr>
<th>Patient 1</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom :</td>
<td></td>
</tr>
<tr>
<td>Prénom :</td>
<td></td>
</tr>
<tr>
<td>Sexe : M</td>
<td>F</td>
</tr>
<tr>
<td>Date de naissance : //__</td>
<td></td>
</tr>
<tr>
<td>Commentaires :</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient 2</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom :</td>
<td></td>
</tr>
<tr>
<td>Prénom :</td>
<td></td>
</tr>
<tr>
<td>Sexe : M</td>
<td>F</td>
</tr>
<tr>
<td>Date de naissance : //__</td>
<td></td>
</tr>
<tr>
<td>Commentaires :</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient 3</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom :</td>
<td></td>
</tr>
<tr>
<td>Prénom :</td>
<td></td>
</tr>
<tr>
<td>Sexe : M</td>
<td>F</td>
</tr>
<tr>
<td>Date de naissance : //__</td>
<td></td>
</tr>
<tr>
<td>Commentaires :</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient 4</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom :</td>
<td></td>
</tr>
<tr>
<td>Prénom :</td>
<td></td>
</tr>
<tr>
<td>Sexe : M</td>
<td>F</td>
</tr>
<tr>
<td>Date de naissance : //__</td>
<td></td>
</tr>
<tr>
<td>Commentaires :</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient 5</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom :</td>
<td></td>
</tr>
<tr>
<td>Prénom :</td>
<td></td>
</tr>
<tr>
<td>Sexe : M</td>
<td>F</td>
</tr>
<tr>
<td>Date de naissance : //__</td>
<td></td>
</tr>
<tr>
<td>Commentaires :</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient 6</th>
<th>Résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nom :</td>
<td></td>
</tr>
<tr>
<td>Prénom :</td>
<td></td>
</tr>
<tr>
<td>Sexe : M</td>
<td>F</td>
</tr>
<tr>
<td>Date de naissance : //__</td>
<td></td>
</tr>
<tr>
<td>Commentaires :</td>
<td></td>
</tr>
</tbody>
</table>
10.7 Annexe 7 Consignes triple emballage

1er emballage
Le dispositif de prélèvement

2ème emballage
Emballages de transport suivant :
- Diagnobag (DACKLAPACK) avec tissu absorbant 1 tube (capacité absorbant 50 ml).

3ème emballage
- Enveloppe postale à bulle étiquetée « UN 3373 BIOLOGICAL SUBSTANCE CATEGORY B ».